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The spacing of nearest levels of the spectrum of a complex network can be regarded as a time series. Joint
use of the multifractal detrended fluctuation approach(MF-DFA) and diffusion entropy(DE) is employed to
extract characteristics from this time series. For the Watts-Strogatz small-world model, there exists a critical
point at rewiring probabilityPr =0.32. For a network generated in the range 0, Pr ,0.32, the correlation
exponent is in the range of 1.0–1.64. Above this critical point, all the networks behave similar to that atpr

=1. For the Erdos-Renyi model, the time series behaves like fractional Brownian motion noise atpER=1/N.
For the growing random network(GRN) model, the values of the long-range correlation exponent are in the
range of 0.74–0.83. For most of the GRN networks the probability distribution function of a constructed time
series obeys a Gaussian form. In the joint use of MF-DFA and DE, the shuffling procedure in DE is essential
to obtain a reliable result.
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I. INTRODUCTION

Detailed investigations indicate that real-world networks
have highly distinctive statistical signatures very different
from random networks[1]. Two classes of models, called the
small-world graphs and the scale-free networks, are proposed
to capture the clustering and the power-law degree distribu-
tion present in many real networks, respectively[2–5]. How-
ever, most analyses have been confined to capture the static
structural properties, e.g., degree distribution, shortest con-
necting paths, clustering coefficients, etc. Capturing the glo-
bal characteristics of complex networks is an essential role at
present time. Another problem is the lack of suitable tech-
niques, which leaves a large gap in our capturing the basic
properties comprehensively and understanding networks
theoretically. Thus, another important role is to use concepts
or techniques developed in other fields to characterize com-
plex networks.

It is demonstrated in extensive literature that the proper-
ties of graphs and the associated adjacency matrices are well
characterized by spectral methods. Investigations on spec-
trum can provide global measures of the network properties
[6–16]. Actually, analyzing spectrum is one of the most im-
portant tools to understand comprehensively the dynamical
processes in complex quantum-mechanical system[17–21].
In recent literature, it is pointed out that joint use of
variance-based detectors and the diffusion entropy(DE)
analysis is a powerful tool to capture the scaling invariance
embedded in a time series[22]. In this paper, regarding the
spacing of nearest levels of a spectrum as a time series, we
try to detect the self-similar structures and long-range corre-
lations embedded in the spectrum of the adjacency matrices
of complex networks by means of joint use of DE and mul-
tifractal detrended fluctuation approach(MF-DFA).

II. METHODS

A complex networkG can be represented by its adjacency
matrix AsGd. For an undirected complex networkAsGd
should be a real symmetric matrix:Aij =Aji =1, if nodesi and
j are connected, or 0, if these two nodes are not connected.
The main algebraic tool that we will use for the analysis of
complex networks will be the spectrum, i.e., the set of eigen-
values of the complex network’s adjacency matrix, called the
spectrum of the complex network. Denoting this spectrum as
hE0,E1,E2, . . . ,ENj, we can construct a time series with the
intervals between two successive eigenvalues as

hDEkuk=1,2,. . .,N+1j = hE1 − E0,E2 − E1, . . . ,EN − EN−1,E0 − ENj.

s1d

The MF-DFA method [23–25] is used to measure
the long-range correlation. The origin spectrum
hE0,E1,E2, . . . ,ENj can be employed as the profile of the
constructed time series. Connecting the starting and the end
of this profile, we can obtain all possible segments with
length l, hsEm,Em+1, . . . ,Em+l−1dum=0,1,2,. . .,Nj. Fit each seg-
ment with ar-order polynomial function. The fitting result
can be regarded as the local trends of all the segments. Tak-
ing the local trends out from the corresponding segments, if
there exists long-range correlation the variance will obey a
power-law, that is

vsl,r,qd =
1

1sN + 1d o
m=0

N F1

l
o
s=1

l

fEm+s−1 − EF
mssdg2Gq/2

,

Vsl,r,qd = vsl,r,qd1/q ~ lasq,rd, s2d

where EF
m is the fitting result for themth segment. If

as2,rd=0.5, there is no correlation and the signal is an un-
correlated signal(white noise); if as2,rd,0.5, the signal is
anticorrelated; ifas2,rd.0.5, there is a positive correlation
in the signal. If the analyzed signal behaves like Brownian
noise, we haveas2,rd=1.5. It should be noted that overlap-*Corresponding author. Email address: huijieyangn@eyou.com
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ping windows are used in this paper instead of the nonover-
lapping procedure in dividing the profile into segments[26].

The concept of DE[22,27–29] is also used to find self-
similar structures. Connecting the starting and the end of the
initially constructed time series, we can obtain a set of delay
register vectors as

hE1 − E0,E2 − E1, . . . ,En − En−1j

hE2 − E1,E3 − E2, . . . ,En+1 − Enj

A

hE0 − EN,E1 − E0, . . . ,En−1 − En−2j. s3d

Considering each vector as a trajectory of a particle in
duration of n time units, all the above vectors can be re-
garded as a diffusion process for a system withN+1 par-
ticles. Accordingly, for each time denoted withn we can
reckon the distribution of the displacements of all the par-
ticles as the state of the system at timen. Dividing the pos-
sible range of displacements intoM0 bins, DE approach de-
fines diffusion entropy as

Ssnd = − o
m=1

M0 Kmsnd
N + 1

lnSKmsnd
N + 1

D , s4d

whereKmsndum=1,2,. . .,M0
is the number of particles whose dis-

placements fall in themth bin at timen. Assume that the
probability distribution function(PDF) of this diffusion pro-
cess fulfills the scaling property,

psm,nd =
Kmsnd
N + 1

=
1

ndFSm

ndDUm=1,2,. . .,M0
. s5d

Change the sum operation to integration. After some trivial
change of integration we get

Ssnd = A + d ln n, s6d

where A is a constant depending on the function form of
PDF. To obtain a suitableM0, the size of a cell is chosen to
be a fraction of the square root of the variance of the con-
structed time series, which reads«=Îok=1

N+1sDEkd2/N+1.
In DE approach the method adopted to define the trajec-

tories is based on the idea of a moving window of sizen that
makes thesth trajectory closely correlated to the next, the
ss+1dth trajectory. The two trajectories haven−1 values in
common. Just as pointed out in the designer’s works, the
motivation for using overlapping windows is given by their
wish to establish a connection with the Kolmogorov-Sinai
(KS) entropy [30,31]. Moving a window of sizen along a
symbolic sequence, we can construct all the possible combi-
nations of symbols, and from the frequency of each combi-
nation it is possible to derive the Shannon entropyEssnd. The
KS entropy can be obtained by the asymptotic limit
limn→` Essnd /n. It is believed that the same sequence, ana-
lyzed with DE method, at the large values ofn where finite
KS entropy shows up, must yield a well-defined scalingd.

Because of the periodic condition the displacements at
time n can be written as

Dssnd = o
i=s

s+n−1

usEi − Ei−1dus=1,2,3,. . .,N+1. s7d

On the other hand, the displacements at timeN−n are

DssN − nd = o
i=s

s+N−n−1

usEi − Ei−1dus=1,2,3,. . .,N+1

= o
i=s

s+N−1

sEi − Ei−1d − o
i=s+N−n

s+N−1

usEi − Ei−1dus=1,2,3,. . .,N+1

=0 − o
i=s+N−n

s+N−1

usEi − Ei−1dus=1,2,3,. . .,N+1

=− Ds+N−nsndus=1,2,3,. . .,N+1. s8d

FIG. 1. MF-DFA result for ER model. ForpER,1/N, as2,2d
=0.5. ForpER.1/N, as2,2d=1.0. ForpER=1/N, there exist two
scaling regimes. The scaling exponents in the short and long re-
gimes are 0.81 and 0.64, respectively. The conventional DFA2 is
used.

FIG. 2. Shuffling DE result for ER model. ForpER=0.8/N, 1 /N,
2 /N, and 8/N the values of thed are 0.44, 0.66, 0.51, and 0.54,
respectively. At the critical point 1/N, d.0.5 significantly. For
pER.1/N or ,1/N, d,0.5.
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Hence the shape of PDF at timen is identical with that at
time N−n; the DE results are symmetric with respect to the
time pointn=N/2.

The DE approach can give a right result only when the
time series is stationary. Shuffling the time series can elimi-
nate the effects of nonstationary and other kind of correla-
tions among the elements.

The DE can capture exactly the real scaling exponentd in
Eq. (5) for any function form of PDF. But the MF-DFA can
capture it only for some special forms of PDF, such as
Gaussian. That is, generally,dÞas2,rd. For Gaussian form,
d=as2,rd. For Levy walk process,d=1/f3−2as2,rd]. Joint
use of DE and MF-DFA will reveal important information
about the PDF.

The adjacency matrices are diagonalized with the Matlab
version of the software packagePROPACK [32].

III. RESULTS

A. Erdos-Renyi model

Consider the Erdos-Renyi model[33]. Starting with N
nodes and no edges, connect each pair with probabilitypER.

It is demonstrated that there exists a critical pointspc

=1/Nd for this kind of random networks. ForpER,pc the
network is broken into many small clusters, while atpc a
large cluster forms, which in the asymptotic limit contains all
nodes[34].

For pER,pc, the adjacency matrix of the Erdos-Renyi
network can be reduced into many small submatrices. There
is not long-range correlation in its corresponding spectrum.
For pER.pc, almost all the nodes belong to one cluster and
the connectivity probability for each pair of nodes ispER.
The ER network withpER=2j /N s j ù1d is equivalent with
a complete random network constructed with Watts-Stragatz
(WS) small-world modelspr =1,k= jd. Hence, we can predict
the exponents as

TABLE I. DE and SDA results for WS small-world model.

Rewiring
probability p

Unshuffling DE
s±0.02

SDA
H±0.02

Shuffling DE
s±0.02

0.00 0.91 0.89 0.46

0.01 0.87 0.89 0.55

0.02 0.89 0.89 0.49

0.03 0.88 0.93 0.52

0.04 0.86 0.88 0.54

0.05 0.83 0.94 0.50

0.10 0.87 0.89 0.57

0.20 0.84 0.86 0.54

0.30 0.82 0.76 0.58

0.32 0.82 0.85 0.58

0.35 0.84 0.85 0.53

0.40 0.86 0.85 0.54

0.50 0.82 0.83 0.56

0.60 0.84 0.81 0.57

0.70 0.85 0.88 0.53

0.80 0.86 0.86 0.52

0.90 0.88 0.87 0.57

1.00 0.88 0.82 0.55

FIG. 3. MF-DFA result for WS small-world model. Forp=0.2
and 0.3, there exist two scaling regimes. Conventional DFA2 is
used.

FIG. 4. MF-DFA result for the WS small-world model. Scaling
exponents for differentp. for 0,p,0.32, there exist two scaling
regimes. The conventional DFA2 is used.

FIG. 5. MF-DFA result for GRN networks generated withu
=0.0,0.2,0.4,0.8. A conventional DFA2 is used. A power law is
obeyed almost exactly for large segment size.
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„as2,2d,dshuffling… = H s0.5,0.5d sPER , 1/Nd
s1.0,0.5d sPER , 1/Nd.

s9d

Simulation results presented in Figs. 1 and Fig. 2 are consis-
tent with this theoretical prediction. AtPER=pc=1/N there
exist two scaling regimes in MF-DFA results. The scaling
exponents in the short and long regimes are 0.81 and 0.64,
respectively. The corresponding value of shuffling DE is
0.66. In the long regime we haveas2,2d=d. The time series
constructed should behave like fractional Brownian motion
(FBM) noise.

B. WS small-world model

Consider the small-world model introduced by WS[1–5].
Adopt the one-dimensional lattice model of the small-world
network. That is, take a one-dimensional lattice ofL nodes
with periodic boundary conditions, and join each node with
its k right-handed nearest neighbors, going through each
edge in turn and with probabilitypr rewiring one end of this
edge to a new node chosen randomly. During the rewiring
procedure double edges and self-edges are forbidden. Nu-

merical simulations by Watts and Strogatz show that this
rewiring process allows the small-world model to interpolate
between a regular lattice and a random graph with the con-
straint that the minimum degree of each node is fixed[2].
The parameterk is chosen to be 2, andL is 3000.

Figure 3 shows several typical MF-DFA results for differ-
ent values ofpr, i.e., pr =0.0,0.2,0.3,0.8. Figure 4 presents
the values of scaling exponentas2,2d for pr P f0,1g.

For pr =0 the generated network is regular and periodical,
we haveas2,2d=1.64, the time series can be regarded as a
slight deviation from Brownian noise. In the range 0.32
øpr ø1.0, as2,2d<1±0.1. In the range 0,pr ,0.32, two
scaling regimes can be found. That is, there exists a transi-
tion point at pr =0.32. Denoting the values of the scaling
exponents in the short and long regimes witha1s2,2d and
a2s2,2d, we have

0.78, a1s2,2d ø 1.1,

1.0, a2s2,2d ø 1.64. s10d

FIG. 6. DE result for network generated withu=0.0. Shuffling
result can detect two scaling regions.

FIG. 7. DE result for GRN network generated withu=0.2. Shuf-
fling result is much smaller than unshuffling result. A single scaling
regime is detected.

FIG. 8. DE result for network generated withu=0.4. Shuffling
result is much smaller than the unshuffling result. A single scaling
regime is detected.

FIG. 9. DE result for network grenerated withu=0.8. Shuffling
result can detect two scaling regions.
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Table I presents the shuffling DE, unshuffling DE, and
SDA results in detail for different values ofpr. Shuffling DE
show that the values of the scaling exponentsd are in the
range of[0.46,0.58]. Joint use of MF-DFA and shuffling DE
tells us that the corresponding PDF obeys a scaling invariant
form rather than a Gaussian or a Levy walk one. The scaling
exponents derived from unshuffling DE are all significantly
larger than the corresponding shuffling ones, which may be
induced by the long-range correlations between elements.
Clearly, joint use of the SDA and the unshuffling DE results
cannot give a reliable PDF form.

C. Growing random network model

Consider the growing random network(GRN) model
[4,35]. At each time step, a new site is added and a link to

one of the earlier sites is created. The connection kernelAk,
defined as the probability that a newly introduced site links
to a preexisting site withk links, determines the structure of
this graph. Consider the complex networks generated with a
class of homogeneous connection kernels,Ak~kus0øuø1d.
The connectivity distribution decreases as a stretched expo-
nential ink, and the asymptotic behavior of which shows two
criticial points atu1= 1

3 andu1= 1
2.

Networks with differentu are generated. The size of each
network is selected to be 4000. It is found that there exist
long-range correlation effects in all these constructed time
series fromu=0 to 1. The power law is obeyed almost ex-
actly. Figure 5 shows several typical MF-DFA results for
different values ofu, i.e., u=0.0,0.2,0.4,0.8.

TABLE II. Result for GRN model. Joint use of shuffling DE and MF-DFA to detect PDF form.

u
Unshuffling DE

s±0.02
SDA

H±0.02
MF-DFA
a±0.02

Shuffling DE
Preferred

PDFs1±0.02 s2±0.02

0.00 0.82 0.84 0.81 0.75 0.52 Levy walk

0.05 0.88 0.82 0.82 0.64 0.57

0.10 0.80 0.82 0.78 0.74 Gaussian

0.15 0.80 0.83 0.83 0.75 0.57 Levy walk

0.20 0.79 0.85 0.79 0.67 Levy walk

0.25 0.80 0.85 0.80 0.75 0.51 Gaussian

0.30 0.86 0.88 0.78 0.79 0.55 Gaussian

0.32 0.82 0.83 0.75 0.73 0.47 Gaussian

0.33 0.69 0.84 0.77 0.75 0.61 Gaussian

0.34 0.81 0.85 0.76 0.75 Gaussian

0.35 0.80 0.85 0.78 0.75 Gaussian

0.36 0.74 0.86 0.77 0.75 Gaussian

0.38 0.83 0.87 0.75 0.73 Gaussian

0.40 0.82 0.86 0.77 0.73 Gaussian

0.42 0.83 0.88 0.76 0.82 0.58

0.44 0.76 0.86 0.77 0.78 0.50 Gaussian

0.45 0.85 0.85 0.78 0.77 0.64 Gaussian

0.46 0.82 0.85 0.78 0.77 0.67 Gaussian

0.48 0.80 0.83 0.79 0.76 0.40 Gaussian

0.49 0.72 0.83 0.80 0.74 Levy walk

0.50 0.87 0.83 0.80 0.77 0.52 Gaussian

0.51 0.80 0.83 0.80 0.77 0.52 Gaussian

0.52 0.67 0.83 0.81 0.78 Gaussian

0.54 0.84 0.86 0.78 0.78 0.55 Gaussian

0.55 0.82 0.80 0.79 0.73 0.50 Levy walk

0.60 0.85 0.85 0.78 0.70 0.53 Levy walk

0.65 0.87 0.88 0.76 0.78 Gaussian

0.70 0.90 0.82 0.80 0.77 Gaussian

0.75 0.95 0.85 0.79 0.75 0.55 Gaussian

0.80 0.88 0.83 0.76 0.77 0.62 Gaussian

0.85 0.88 0.87 0.75 0.73 Gaussian

0.90 0.75 0.85 0.74 0.82

0.95 0.86 0.88 0.80 0.79 0.42 Gaussian

1.00 0.81 0.88 0.76 0.79 Gaussian
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Figures 6–9 present several typical DE results for differ-
ent values ofu, i.e., u=0.0,0.2,0.4,0.8. To obtain reliable
result, we shuffle the constructed time series first to eliminate
the effects of correlations between elements. For most of the
generated networks, shuffling DE approach can detect two
scaling regimes. Denote the scaling exponents for short and
long regimes withd1 and d2. Basically, we haved1.d2,
significantly.

To check the effect of correlations between elements, un-
shuffling result is also presented. This effect is so strong that
the shuffling procedure is essential to obtain a reliable result.
The unshuffling result cannot distinguish the two scaling re-
gions.

Table II presents the DE, SDA, and MF-DFA results in
detail for different values ofu. Comparison between the
shuffling DE (the short regimed1) and the MF-DFA results
shows that for most values ofu the PDF has a Gaussian
form. At each of the pointsu=0.0,0.15,0.20,0.5,0.55,0.60
the PDF has a Levy walk form. There are also several points
at which we cannot find a preferred PDF form at present
time.

IV. CONCLUSSIONS

For WS model, the long-range correlation exponents for
the two limit conditions, the regular networkspr =0d and
complete random networkspr =1d, are 1.64 and 1.0, respec-
tively. For a network generated in the range 0,pr ,0.32, the
correlation exponent is in the range of 1.0–1.64. Above the
critical point pr =0.32, all the networks behave similar to the
complete random onespr =1d. Joint use of shuffling DE and
MF-DFA cannot determine the PDF of the constructed time
series.

For ER model, a network withpER.1/N is similar to a
complete random WS network. At the critical pointpER

=1/N, the constructed time series behaves like FBM noise.
For GRN model the values of the long-range correlation

exponent are in the range of 0.74–0.83. Joint use of MF-DFA
and shuffling DE can give the PDF form in most cases. The
average connectivity probability is 2/N, but the connection
kernel determines the connectivity probability for each pair
of nodes. Because of the growing character of the GRN
model, we cannot simply regard a GRN network withu=0 as
an ER network atpER=2/N. The values ofas2,2d and
dshuffling show this difference significantly. This is consistent
with the conclusion in Ref.[36] that the growing character of
scale-free model is essential to sustain the scale-free state
observed in the real systems[36].

In the joint use of MF-DFA and DE, shuffling procedure
in DE is essential, especially when we do not know much
about the considered spectrum. Unshuffling DE may lead to
serious mistakes. Joint use of shuffling DE and MF-DFA
may be a potential tool in the fields of quantum chaos, com-
plex nucleus, and so on, where detecting structure informa-
tion from spectrum is an essential role.

Regarding the spectrum of a complex network as a time
series, we can adopt the powerful tools developed in the field
of time series analysis to reveal new features of a complex
network.
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