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Temporal series analysis approach to spectra of complex networks
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The spacing of nearest levels of the spectrum of a complex network can be regarded as a time series. Joint
use of the multifractal detrended fluctuation appro@dfr-DFA) and diffusion entropyDE) is employed to
extract characteristics from this time series. For the Watts-Strogatz small-world model, there exists a critical
point at rewiring probabilityP,=0.32. For a network generated in the range B <0.32, the correlation
exponent is in the range of 1.0—1.64. Above this critical point, all the networks behave similar to fhat at
=1. For the Erdos-Renyi model, the time series behaves like fractional Brownian motion npise=4t/N.
For the growing random networlGRN) model, the values of the long-range correlation exponent are in the
range of 0.74—0.83. For most of the GRN networks the probability distribution function of a constructed time
series obeys a Gaussian form. In the joint use of MF-DFA and DE, the shuffling procedure in DE is essential
to obtain a reliable result.
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I. INTRODUCTION Il. METHODS

A complex networkG can be represented by its adjacency

Detailed investigations indicate that real-world networksmatrix A(G). For an undirected complex network(G)
have highly distinctive statistical signatures very differentshould be a real symmetric matri&; =A; =1, if nodesi and
from random networkgl]. Two classes of models, called the j are connected, or 0, if these two nodes are not connected.
small-world graphs and the scale-free networks, are proposerhe main algebraic tool that we will use for the analysis of
to capture the clustering and the power-law degree distribueomplex networks will be the spectrum, i.e., the set of eigen-
tion present in many real networks, respectividy5]. How-  values of the complex network’s adjacency matrix, called the
ever, most analyses have been confined to capture the stagipectrum of the complex network. Denoting this spectrum as
structural properties, e.g., degree distribution, shortest coEg,E;,E,, ... ,En}, we can construct a time series with the
necting paths, clustering coefficients, etc. Capturing the gloitervals between two successive eigenvalues as
bal characteristics of complex networks is an essential role
present time. Another problem is the lack of suitable teche—){IAEdk:lev---N*l} ={Ei-EoE- By .. EnEn-1 B0 By
niques, which leaves a large gap in our capturing the basic (1)

properties comprehensively and understanding networks The MF-DFA method [23-25 is used to measure
theoretically. Thus, another important role is to use concept§ne long-range ~ correlation. The origin  spectrum

or techniques developed in other fields to characterize Comeo E,.E, E.} can be employed as the profile of the

plex _networks. . N constructed time series. Connecting the starting and the end
It is demonstrated in extensive literature that the propery¢ ihis profile, we can obtain all possible segments with

ties of graphs and the associated adjacency matrices are Wf’élngth l, {(Em:Emets - Emei-Dlmeo12. n}. Fit each seg-

characterized by spectral methods. Investigations on spegient with ar-order polynomial function. The fitting result

trum can provide global measures of the network propertiegan pe regarded as the local trends of all the segments. Tak-

[6-16. Actually, analyzing spectrum is one of the most im- jng the local trends out from the corresponding segments, if

portant tools to understand comprehensively the dynamicahere exists long-range correlation the variance will obey a

processes in complex quantum-mechanical syqterm21. power-law, that is

In recent literature, it is pointed out that joint use of \ | "

variance-based detectors and the diffusion entrép¥) 1 1 e ¢

analysis is a powerful tool to capture the scaling invariance oll,r,q) = 1(N+1) > TE [Emes-1 = EF(9)] '

embedded in a time seri¢22]. In this paper, regarding the moL st

spacing of nearest levels of a spectrum as a time series, we

try to detect the self-similar structures and long-range corre- V(l,r,q) =v(l,r,q) M s 1490, (2)

lations embedded in the spectrum of the adjacency matrlcg,\slhere ET is the fiting result for themth segment. If

of complex networks by means of joint use of DE and mul- _ , . . .
. . a(2,r)=0.5, there is no correlation and the signal is an un-
tifractal detrended fluctuation approadtiF-DFA). correlated signajwhite noise; if a(2,r)<0.5, the signal is

anticorrelated; ifa(2,r) > 0.5, there is a positive correlation
in the signal. If the analyzed signal behaves like Brownian
*Corresponding author. Email address: huijieyangn@eyou.com noise, we havex(2,r)=1.5. It should be noted that overlap-
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ping windows are used in this paper instead of the nonover-

. e L = 2,2)=1.03
lapping procedure in dividing the profile into segmej6]. EE:_C/(': N}=(0.8,10000) «2.2)
The concept of DE22,27-29 is also used to find self- 1 oo (CZN)=(1:0110000)
similar structures. Connecting the starting and the end of the —m— (cN)=(2.0,4000) 372(22,)2-);18'?

initially constructed time series, we can obtain a set of delay 104 —0— (c,N)=(8.0,4000) foe
register vectors as ] éaaé‘&ﬁ" a(2,2)=0.64

Vv(,2,2)

{E1—Eo,Eo—Ey, ... By —Ep-a}

{E2-E1Es—Ep, ... Enui—Ep}

icrossover point

I ;OIOO

|
EoEnEamBo - Boa =Bl ) FIG. 1. MF-DFA result for ER model. Foper<1/N, a(2,2)

Considering each vector as a trajectory of a particle in=0.5. Forpgg>1/N, a(2,2)=1.0. Forpgr=1/N, there exist two
duration ofn time units, all the above vectors can be re-scaling regimes. The scaling exponents in the short and long re-
garded as a diffusion process for a system viNthl par- gimes are 0.81 and 0.64, respectively. The conventional DFA2 is
ticles. Accordingly, for each time denoted withwe can  used.
reckon the distribution of the displacements of all the par-
ticles as the state of the system at timeDividing the pos- Because of the periodic condition the displacements at
sible range of displacements inkd, bins, DE approach de- {ime n can be written as
fines diffusion entropy as

stn-1
M
_ s Ka() (K D= 2 (E-E dle1zs.. ne (7)
Sn) = §1N+1|n(N+1)' 4) =

] ) _ On the other hand, the displacements at tiden are
whereKm(n)|m:1,2”__,\,IO is the number of particles whose dis-

placements fall in thenth bin at timen. Assume that the
probability distribution functiofPDF) of this diffusion pro-  Ds(N-n)= 2 (Ei—E-dls123, . N1
cess fulfills the scaling property, I=s

stN-n-1

stN-1 s+N-1
Kn() _ 1 _(m = E-E-p)- E-E_
p(m,n) = N+ 1 :EsF Eg m=12,.. Mo (5) gs (E i-1) i:s+EN—n (B i 1)|s=1,2,3,...N+1
s+tN-1
Change th_e sum operation to integration. After some trivial =0- > (- EDle123, net
change of integration we get i=s+N-n
Snh)=A+48Inn, (6) == Ds+N—n(n)‘Fl,2,3,...N+l- (8)
where A is a constant depending on the function form of
PDF. To obtain a suitabl®¥l,, the size of a cell is chosen to | p.=cN
be a fraction of the square root of the variance of the con- ) ° (c,N)=(0.8,10000)
structed time series, which reads = (AE)2/N+1. T e (N)=(1.0,10000)
In DE approach the method adopted to define the trajec- 1 ® (¢,N)=(2.0,4000) g
tories is based on the idea of a moving window of sizbat 31 B (@N)=(8.0,4000) E_:_;.;E?ﬁ o*®
makes thesth trajectory closely correlated to the next, the § ____,g;:::-‘? .,.o"
(s+1)th trajectory. The two trajectories have-1 values in < 2- i o
common. Just as pointed out in the designer’s works, the .
motivation for using overlapping windows is given by their
wish to establish a connection with the Kolmogorov-Sinai i o
(KS) entropy[30,3]. Moving a window of sizen along a '
symbolic sequence, we can construct all the possible combi 0+
1 2.71828 7.38906 20.08554 5459815 148.41316 403.42879

nations of symbols, and from the frequency of each combi-
nation it is possible to derive the Shannon entrégy). The

KS entropy can be obtained by the asymptotic limit FiG. 2. Shuffling DE result for ER model. Fpgr=0.8/N, 1/N,
lim,_..E(n)/n. It is believed that the same sequence, ana2/N, and 8N the values of thes are 0.44, 0.66, 0.51, and 0.54,
lyzed with DE method, at the large valuesrofvhere finite  respectively. At the critical point N, §>0.5 significantly. For
KS entropy shows up, must yield a well-defined scalfhlg  pgg>1/N or <1/N, §~0.5.
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. TABLE |. DE and SDA results for WS small-world model.
100 -

] o 00 ooﬁ&&p Rewiring Unshuffling DE SDA Shuffling DE
B p=02 o‘ooo o probability p 010.02 H+0.02 010.02
q s pos s M 0.00 0.91 0.89 0.46
RIS O 00 gunt 0.01 0.87 0.89 0.55
> 0.02 0.89 0.89 0.49
0.03 0.88 0.93 0.52
0.04 0.86 0.88 0.54
14 ¥ 0.05 0.83 0.94 0.50
100 T oo ' 0.10 0.87 0.89 0.57
| 0.20 0.84 0.86 0.54
FIG. 3. MF-DFA result for WS small-world model. F@=0.2 0.30 0.82 0.76 0.58
and 0.3, there exist two scaling regimes. Conventional DFA2 032 0.82 0.85 0.58
used. 0.35 0.84 0.85 0.53
0.40 0.86 0.85 0.54
Hence the shape of PDF at tinmeis identical with that at 0.50 0.82 0.83 0.56
time N-n; the DE results are symmetric with respect to the0.60 0.84 0.81 0.57
time pointn=N/2. 0.70 0.85 0.88 0.53
_ The DE gpproa_lch can give.a right (esult oply when _th‘?o.so 0.86 0.86 0.52
time s;}anesf;s statlfonary. Shufflmg thg tm;]e SE'”%S (}an ehrlm— . 0.88 0.87 057
nate the effects of nonstationary and other kind of corre a3 00 0.88 0.82 0.55

tions among the elements.

The DE can capture exactly the real scaling expoant

Eq. (5) for any function form of PDF. But the MF-DFA can
capture it only for some special forms of PDF, such as
Gaussian. That is, generall§# «(2,r). For Gaussian form,
6=a(2,r). For Levy walk process§=1/[3-2a(2,r)]. Joint

use of DE and MF-DFA will reveal important information

about the PDF.

The adjacency matrices are diagonalized with the Matlat?1e

version of the software packag@®opPACK[32].

Il. RESULTS
A. Erdos-Renyi model

Consider the Erdos-Renyi modg33]. Starting with N
nodes and no edges, connect each pair with probalpility

2.0

It is demonstrated that there exists a critical poipt
=1/N) for this kind of random networks. Fguggr<p, the
network is broken into many small clusters, whilemgta
large cluster forms, which in the asymptotic limit contains all
nodes[34].

For per<p. the adjacency matrix of the Erdos-Renyi
twork can be reduced into many small submatrices. There
is not long-range correlation in its corresponding spectrum.
For per> p., almost all the nodes belong to one cluster and
the connectivity probability for each pair of nodesggsg.

The ER network withpegr=2j/N (j=1) is equivalent with

a complete random network constructed with Watts-Stragatz
(WS) small-world modelp,=1,k=j). Hence, we can predict
the exponents as

—O— short regime o,
—O—long regime a,

9 E\:_D\D
./

a(2,2)

0.8 4

0.6—- i
p,=0.32;
i

0.4

P

—e—6=0.0
—0—6=0.2

Vv(1,2,2)

T T
0.0 0.2 0.4 0.6

rewiring probability

0.8

FIG. 4. MF-DFA result for the WS small-world model. Scaling
exponents for differenp. for 0<p<0.32, there exist two scaling

regimes. The conventional DFA2 is used.

T——r—1
100 1000

FIG. 5. MF-DFA result for GRN networks generated with
=0.0,0.2,0.4,0.8. A conventional DFA2 is used. A power law is
obeyed almost exactly for large segment size.
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5 4
6=0.0 . 5=0.82 . | e=0.4 - 0029@59
44 ¢ Un-shuffling 2 ® Un-shuffling >Ce®
o Shuffling I o Shuffling o
oY g 4
3 ‘3360&3‘9 ] O
S & g
» 8,=0.52 _..-.0" 5 @
27 - ! P
. o i i
..»" ‘-'.‘.’ : "- ""’. 8:0_82
iy L 8,20.75 ; S .
'—-r—r—-—r—g(.'.,,.......,........,.......y,........,..... 0 LML ELELELILELE BELANL L L L ELALLS B AL DAL L LA R AL AL LI AL
1 271828 7.38906 20.08554 54.59815 148.41316 1 2.71828 7.38906 20.08554 54.59815 148.41316
n Ln(n)
FIG. 6. DE result for network generated with=-0.0. Shuffling FIG. 8. DE result for network generated with=0.4. Shuffling
result can detect two scaling regions. result is much smaller than the unshuffling result. A single scaling

regime is detected.

(0.5,0.5 (Pgr<1/N)
(a(2,2), Sshuftiing) = (9 merical simulations by Watts and Strogatz show that this

(10,05 (Per<1/N). rewiring process allows the small-world model to interpolate
Simulation results presented in Figs. 1 and Fig. 2 are considetween a regular lattice and a random graph with the con-
tent with this theoretical prediction. A2.g=p.=1/N there straint that the minimum degree of each node is fik2d
exist two scaling regimes in MF-DFA results. The scaling The parametek is chosen to be 2, and is 3000.
exponents in the short and long regimes are 0.81 and 0.64, Figure 3 shows several typical MF-DFA results for differ-
respectively. The corresponding value of shuffling DE isent values ofp,, i.e., p,=0.0,0.2,0.3,0.8. Figure 4 presents
0.66. In the long regime we have&?2,2)=4. The time series the values of scaling exponeat2,2) for p, € [0, 1].
constructed should behave like fractional Brownian motion For p,=0 the generated network is regular and periodical,
(FBM) noise. we havea(2,2)=1.64, the time series can be regarded as a
slight deviation from Brownian noise. In the range 0.32
=p,<1.0, a(2,2=1+0.1. In the range €& p,<0.32, two
B. WS small-world model scaling regimes can be found. That is, there exists a transi-

Consider the small-world model introduced by \4s-5.  tion point atp,=0.32. Denoting the values of the scaling
Adopt the one-dimensional lattice model of the small-worlde€Xponents in the short and long regimes witf{2,2) and
network. That is, take a one-dimensional latticeLohodes ~ @2(2,2), we have
with periodic boundary conditions, and join each node with
its k right-handed nearest neighbors, going through each
edge in turn and with probabilitg, rewiring one end of this
edge to a new node chosen randomly. During the rewiring
procedure double edges and self-edges are forbidden. Nu-

0.78< (2,2 < 1.1,

1.0< ay(2,2) < 1.64. (10)
4
0=0.2 gﬁ
¢ Un-shuffling ©20 41 =08 ey
34 ) o'e® e  Un-shuffl
o Shuffling o e I n-shutting )
o ad o Shuffling ';Q,,e-o: ..’
—_ 0.-" x4 ,.;:30' :“
£ 2 5,067 _ T
@ . £ 5,062 g
g 3=0.79 1 81=076 ’ Rd E
g o L 8=0.88 !
0 LU DL AL AL A B LA L LIS DL LR L LA L L L B [ ] “'—' i
1 2.71828 7.38906 20.08554 5459815  148.41316 [ o e e L I A B o o o i e o A e e e e
n 1 2.71828 7.38906 20.08554 54.59815 148.41316
Ln(n)

FIG. 7. DE result for GRN network generated witk 0.2. Shuf-
fling result is much smaller than unshuffling result. A single scaling  FIG. 9. DE result for network grenerated wittx 0.8. Shuffling
regime is detected. result can detect two scaling regions.
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TABLE Il. Result for GRN model. Joint use of shuffling DE and MF-DFA to detect PDF form.

Shuffling DE

Unshuffling DE SDA MF-DFA Preferred
0 010.02 H+0.02 a*0.02 0,£0.02 0,1£0.02 PDF
0.00 0.82 0.84 0.81 0.75 0.52 Levy walk
0.05 0.88 0.82 0.82 0.64 0.57
0.10 0.80 0.82 0.78 0.74 Gaussian
0.15 0.80 0.83 0.83 0.75 0.57 Levy walk
0.20 0.79 0.85 0.79 0.67 Levy walk
0.25 0.80 0.85 0.80 0.75 0.51 Gaussian
0.30 0.86 0.88 0.78 0.79 0.55 Gaussian
0.32 0.82 0.83 0.75 0.73 0.47 Gaussian
0.33 0.69 0.84 0.77 0.75 0.61 Gaussian
0.34 0.81 0.85 0.76 0.75 Gaussian
0.35 0.80 0.85 0.78 0.75 Gaussian
0.36 0.74 0.86 0.77 0.75 Gaussian
0.38 0.83 0.87 0.75 0.73 Gaussian
0.40 0.82 0.86 0.77 0.73 Gaussian
0.42 0.83 0.88 0.76 0.82 0.58
0.44 0.76 0.86 0.77 0.78 0.50 Gaussian
0.45 0.85 0.85 0.78 0.77 0.64 Gaussian
0.46 0.82 0.85 0.78 0.77 0.67 Gaussian
0.48 0.80 0.83 0.79 0.76 0.40 Gaussian
0.49 0.72 0.83 0.80 0.74 Levy walk
0.50 0.87 0.83 0.80 0.77 0.52 Gaussian
0.51 0.80 0.83 0.80 0.77 0.52 Gaussian
0.52 0.67 0.83 0.81 0.78 Gaussian
0.54 0.84 0.86 0.78 0.78 0.55 Gaussian
0.55 0.82 0.80 0.79 0.73 0.50 Levy walk
0.60 0.85 0.85 0.78 0.70 0.53 Levy walk
0.65 0.87 0.88 0.76 0.78 Gaussian
0.70 0.90 0.82 0.80 0.77 Gaussian
0.75 0.95 0.85 0.79 0.75 0.55 Gaussian
0.80 0.88 0.83 0.76 0.77 0.62 Gaussian
0.85 0.88 0.87 0.75 0.73 Gaussian
0.90 0.75 0.85 0.74 0.82
0.95 0.86 0.88 0.80 0.79 0.42 Gaussian
1.00 0.81 0.88 0.76 0.79 Gaussian

Table | presents the shuffling DE, unshuffling DE, andone of the earlier sites is created. The connection kekpel
SDA results in detail for different values of. Shuffling DE  defined as the probability that a newly introduced site links
show that the values of the scaling exponefitare in the o a preexisting site wittk links, determines the structure of

range of[0.46,0.58. Joint use of MF-DFA and shuffling DE  tnjs graph. Consider the complex networks generated with a
tells us that the corresponding PDF obeys a scaling invariantj;o5 of homogeneous connection kernals: k(0< <1).

form rather than a Gaussian or a Levy walk one. The scalmq.he connectivity distribution decreases as a stretched expo-

exponents derived from unshuffling DE are all significantl e . ) .
Iarzer than the corresponding shu?fling ones. whigch may t))/gennal ink, and the asymptotic behavior of which shows two

ie . . _1 _1
induced by the long-range correlations between element&iticial points atf; =3 and 6,=5. .
Clearly, joint use of the SDA and the unshuffling DE results Networks with differentd are generated. The size of each

cannot give a reliable PDF form. network is selected to be 4000. It is found that there exist
_ long-range correlation effects in all these constructed time
C. Growing random network model series from#=0 to 1. The power law is obeyed almost ex-

Consider the growing random networGRN) model actly. Figure 5 shows several typical MF-DFA results for
[4,35. At each time step, a new site is added and a link tadifferent values of9, i.e., #=0.0,0.2,0.4,0.8.
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Figures 6—9 present several typical DE results for differ-=1/N, the constructed time series behaves like FBM noise.
ent values of6, i.e., #=0.0,0.2,0.4,0.8. To obtain reliable For GRN model the values of the long-range correlation
result, we shuffle the constructed time series first to eliminatexponent are in the range of 0.74-0.83. Joint use of MF-DFA
the effects of correlations between elements. For most of thand shuffling DE can give the PDF form in most cases. The
generated networks, shuffling DE approach can detect twaverage connectivity probability is Rl but the connection
scaling regimes. Denote the scaling exponents for short arkernel determines the connectivity probability for each pair
long regimes withs, and &,. Basically, we haves; > 6,, of nodes. Because of the growing character of the GRN
significantly. model, we cannot simply regard a GRN network withO as

To check the effect of correlations between elements, unan ER network atpgr=2/N. The values ofa(2,2) and
shuffling result is also presented. This effect is so strong thady, g Show this difference significantly. This is consistent
the shuffling procedure is essential to obtain a reliable resulwith the conclusion in Ref.36] that the growing character of
The unshuffling result cannot distinguish the two scaling rescale-free model is essential to sustain the scale-free state
gions. observed in the real systerfi36].

Table Il presents the DE, SDA, and MF-DFA results in  In the joint use of MF-DFA and DE, shuffling procedure
detail for different values ofg. Comparison between the in DE is essential, especially when we do not know much
shuffling DE (the short regime;) and the MF-DFA results about the considered spectrum. Unshuffling DE may lead to
shows that for most values df the PDF has a Gaussian serious mistakes. Joint use of shuffling DE and MF-DFA
form. At each of the point$=0.0,0.15,0.20,0.5,0.55,0.60 may be a potential tool in the fields of quantum chaos, com-
the PDF has a Levy walk form. There are also several pointplex nucleus, and so on, where detecting structure informa-
at which we cannot find a preferred PDF form at presention from spectrum is an essential role.

time. Regarding the spectrum of a complex network as a time
series, we can adopt the powerful tools developed in the field
IV. CONCLUSSIONS of time series analysis to reveal new features of a complex

For WS model, the long-range correlation exponents fOInetwork.

the two limit conditions, the regular networlp,=0) and
complete random networp,=1), are 1.64 and 1.0, respec-
tively. For a network generated in the range f, <0.32, the This work was supported by the National Science Foun-
correlation exponent is in the range of 1.0-1.64. Above thealation of China under Grant No. 60274051/F0303, the Inno-
critical pointp,=0.32, all the networks behave similar to the vation Fund, and the Post-Doctor Fund of Nankai University.
complete random oné,=1). Joint use of shuffling DE and It was also supported partially by the National Science Foun-
MF-DFA cannot determine the PDF of the constructed timedation of China under Grant No. 10175036. One of the au-
series. thors(H.J.Y.) would like to thank Professor Y. Z. Zhuo, Pro-

For ER model, a network witlpgg>1/N is similar to a fessor Zhuxia Li, and Professor Xizhen Wu for stimulating
complete random WS network. At the critical poiptg  discussions.
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